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Abstract— Sinusoidal parameter estimation is a approximate a signat (¢) as:
computationally-intensive task, which can pose prob- N .
lems for real-time implementations. In this paper, ~ _
we propose a low-complexity iterative method for () = ;Ak (t) cos (/0 wi (t) dt+¢k> - @)
estimating sinusoidal parameters that is based on the ) ] ] ]
linearisation of the model around an initial frequency Where A (¢) is the time-varying amplitudeyy, (t)
estimate. We show that for N sinusoids in a frame of iS the time-varying frequency ang is the initial
length L, the proposed method has a complexity of phase. The model in (1) has limited practical use
O (LN), which is significantly less than the matching because it is very complex and has an infinite number
pursuits method. Furthermore, the proposed method of ways to approximate: (t). Using discrete time:

is shown to be more accurate than the matching anq normalised frequencids over a finite window
pursuits and time frequency reassignment methods in h(n) yields a simpler model:

our experiments.
N

|. INTRODUCTION T(n)=h(n)), <A’<f + Ak’”) cos (Bkn + )
k=1

The sinusoidal model is increasingly being used . o o _(2)
in signal processing applications such as speech SWp_ereA is the first time derivative of the amplitude,
thesis [1], speech coding [2], and audio coding [3f' €vVen
Estimating the model parameters often represents a N
significant fraction of the overall complexity of these z(n) = h(n) Z Ay cos (Oxn + i) (3)
applications. However, many real-time applications k=1 ) o o
require a very low-complexity estimation algorithm!f we do not want to model amplitude variation within

This paper proposes a new procedure based on thffame. Although simpler, the models in (2) and (3)
linearisation of the model around an initial frequenc§'® Still difficult to estimate because they involve a
estimate. Parameters are optimised using an iteratif@-linear optimisation problem.

method with fast convergence. We show that for typ- Several methods exist for estimating sinusoidal
ical configurations, it is over 20 times less compleRar@meters. The standard DFT over a rectangular
than matching pursuits [4]. window is limited by both frequency leaking (side-

We start by introducing sinusoidal modelling an bes from the r.ectangular window) and its poor
prior art in Section I1. Section Il discusses frequencyca4€Ncy resolution equal to/ L rad/s for a frame
estimation and our proposed linearisation. In Secti IengthL: - :

IV, we present a low-complexity iterative solver for By defining an over-complete dictionary of sinu-

estimating sinusoidal parameters. Results are pfseo—'dal bases, matching pursuits methods [4] make it

sented in Section V with a discussion and Secti ossible to increase the resolution arbitrarily, while
VI concludes this paper allowing for a window in its basis functions. How-

ever, being a greedy algorithm, matching pursuits
behaves sub-optimally when the basis functions used
are not orthogonal [5], which is usually the case for
A general sinusoidal model that considers botsinusoids of arbitrary frequency over a finite win-
amplitude and frequency modulation can be used dow length. The orthogonality problem of matching

Il. SINUSOIDAL PARAMETER ESTIMATION



pursuits can be mainly overcome by further norand italic symbols {; ;) denote the elements of the
linear optimisation as in [5]. However this requiresnatrix. We can express (5) in matrix form as
a significant increase in complexity (such@g§N*)

terms). X =Aw | (10)
Another approach is the time frequency (TF) reas- A= [AC, AS AT AL (11)

signment method, which can be used to improve esti- T

mates of frequency localisation within various forms w=/[c,s,d, t]" . 12)

of TF representations [6], including spectrograms [6\]/vhere the basis componems, A*, A* and A are
[7]. In the case of the spectrogram, phase informatiQ.finad as Y

from the short time Fourier transform (STFT) is

exploited to move energy away from the centre of the a; . =h(n)cosOxn , (13)
frequency_ bln(t,_w) to the centre _of gravity of the as . =h (n)sinfn | (14)
spectral distribution [6]. Hence, this approach can be J

used to reduce the inaccuracy of frequency estimation U =h () ncosOgn (15)
in a quantised TF representation that is reliant upon afbk =h(n)nsinfgn . (16)

the temporal resolution of the window. A drawback i )
to this approach is that it is not well suited to noisg}_he best fit can then be obtained through a least-
signal conditions, as energy becomes concentratecPf#/aré Optimisation, by posing
noise dominated regions [7]. D)

Other work, such as [1], [8] focuses on the estima- Iw
tion of sinusoidal partials in harmonic signals. While ) ) ) ) )
these methods generally have a low complexity, théjneréxx is the windowed input signal. This leads
are not applicable to non-harmonic signals. 10 the well known solution

[Aw —x,]* =0, (17)

_ TA\ L AT
l1l. L INEARISED MODEL w=(ATA) A'x,. (18)

As another way of obtaining accurate frequency Once all linear parameters in (5) are found, the real
estimation, we propose rewriting the sinusoidainusoidal parameters can be retrieved by solving the

model in (2) as system (6)-(9):
N 2 2
_ ' A =\/ci + 53, (19)
#(n) =h(m) > (A +ndy) - Tk
pt ¢ = arg (ck — Jsk) (20)
cos (6 + Ab) n+r) . (4) lﬁzﬂﬁi%ﬂ’ (21)
whereg),, is an initial estimate of the frequencies and di.s, — trcr,
Ad, is an unknown correction to the initial estimate. Aby = — - (22)
When both the amplitude modulation parame&é@r k
and the frequency correctiahf;, are small, we show IV. I TERATIVE SOLVER

in Appendix | that (4) can be linearised as the sum Thoygh it is far less computationally demanding
of four basis functions than a classic non-linear solver, solving the linear

N system (18) still requires a great amount of compu-
z(n)=h(n) ch cos Oxn + s sin Oxn tation. In [8], a method was proposed to reduce that
k=1 complexity fromO (LN?) to O (N log N), but only

+ dgncosOyn + tynsinfyn , (5) for harmonic signals. In this paper, we propose an
O (LN) solution without the restriction to harmonic

with signals.
Our method uses an iterative solution based on the
¢ =Aj cos ¢y, (6) ) o
' assumption that matri¥d is close to orthogonal, so
s = — Agsingy, , () that
dk :A;f COS (bk — AkAHk sin (bk s (8) 1 1 1
o (ATA) " ~ diag =d .
ty = — Ap sin ¢, — ApAby cos ¢y, . 9) al'a a%aN

(23)

From now on, unless otherwise noted, bold UBrat way, an initial estimate can be computed as
percase symbolsA) denote matrices, bold lower

case symbolsa() denote the columns of the matrix w® = o 1A x, (24)



and then refined as Algorithm 1 lIterative linear optimisation

4 . . Compute basis functions (13)-(16).
wlitD) — W@ L @-1AT (Xh _ i(z)) o0 ?_ o (13)-(16)

=w® + & 1AT (x, — Aw®) . (25 € — Xp
w (xh W ) (25) for all iteration:=1...Mdo

It turns out that the iterative method described in  for all sinusoid component =1...4N do

(24)-(25) is strictly equivalent to the Jacobi iterative Awg) —ale
method. The complexity of the algorithm is reduced e e— akAw,(f)

to O(LMN), where M is the number of iterations w0 — 0D L Ap®
required for acceptable convergence. Unfortunately, endkfor k k
while the Jacobi method is generally stable for mostenol for

matricesA obtained in practice, convergence is not

for all sinusoidk =1...N do
guaranteed and depends on the actual frequefigies Inysoidk

Ak A /Cz + S%

A. Gauss-Seidel Method (;Sk — arg( cp — ]Sk)
An alternate to the Jacobi method is the Gauss- A — dkc’“AM

Seidel method, which has the main advantage that Aﬂk — W

it is guaranteed to converge in this case because thend for *

matrix AT A is a symmetric, positive definite matrix

[9]. Because the columns oA are usually nearly

orthogonal, ATA is strongly diagonally dominant Wheree,” " is the current error on the approximation

and the Gauss-Seidel method converges quickly. TAed is computed recursively as

(i+1)

linear system can be expressed as St _
k—1
Rw=>b 26) . (+1) _ i i . k#0
w=b, (26) olth) — (w,ﬁ_ﬂl’—w,ﬁll)ak )
where e k=0
N ) -
R=ATA , (27) (32)

T The resulting computation is summarised in Algo-
b=A"x . (28) rithm 1. If there is only one iteration, then algorithm
If we assume that matriA has been pre-normalisedL is equivalent to a simplified version of the matching
(afa, = 1,Vk), the Gauss-Seidel algorithm is expursuits algorithm where the atoms (frequency of the
pressed as sinusoids) have been pre-defined before the search.
wl(jﬂ) b Z ” jw(H ) Z ” jw(i) From this point_ of view, the_ proposed method relax_es
v v the orthogonality assumption made by the matching
, pursuits method.
—anh —Zakagw(lﬂ Za;‘fajwj(»l) The main difference with the Jacobi method is
i<k >k the Gauss-Seidel method includes partial updates of
_wli) +akxh_zakaj (i+1) the error term after each extracted sinusoid. The
i<k convergence also follows intuitively from the fact
T ) that each individual step is an exact projection that
- Zak ajw is guaranteed to decrease the current eerer or
‘ at worst leave it constant if the optimal solution has
:w,(j) +alx;, —al <Avs7k(i+1)) been reached. Also, because the error term is updated
, , after each componerit, placing the highest-energy
=w§§) +ay, (Xh - A"Gk(lﬂ)) ’ (29)  terms first speegs up thepoptimgi]sation.?:or this reagson,
where we first include thecos 6;n and thesin 6;n terms,
followed by then cosfn and thensinfyn terms.
wk(iﬂ) _ [w((]i—i-l) (i4+1)

j<k i>k

ik

e W, We have found that this usually reduces the number
of iterations required for convergence. The resulting

(30) algorithm typically converges in half as many iter-
ations as alternative conjugate gradient techniques,
such as LSQR [10], which cannot take advantage of
the diagonal dominance of the system.

If in (13)-(16) we (arbitrarily) choose = 0 to lie
+a e,(j*l) ) (31) in the centre of the frame (between sampl& and

i o) 17T
o, )]
We can further simplify the computation of (29) by
noting that only one element af;, (‘") changes for
each step. We thus have

w](:—’_l) (z)



sampleL/2 + 1 if L is even), thea! anda!, vectors Algorithm 2 Non-linear iterative optimisation
all have even symmetry, whilg; anda{ all have odd ~ Vk, 0) = initial frequency estimate
symmetry. This leads to the following orthogonality Yk, [Ak, ok, A,] < 0

properties: w® —o0
[ € = Xn
(ag.ap) =0, (33) for all non-linear iteration=1...M do
<az’ag> —0, (34) for all sinusoidk do
b cp — Ag cos ¢
<ak’ak> =0, (35) S — —Agsin ¢
(af,al) =0 (36) di — Ay cos

[ —A;f sin ¢y,

Because the even and odd bases are orthogonal to end for

each other, we can optimise them separately as e — x — Aw(~D (result of the last iteration
with updated frequency)

T evenT A even\—1 a evenT
e t]” = (A ATT) A x, @) for all sinusoid component = 1...4N do

-1 i
d,s]” = <AoddTAodd) ATy (38) Aw,i) —ale .
even c e e —a Aw !
Acn =A% A1, (39) O EDE @
i 4 Wy, wy, + Aw,
Aodd _ [A A } . (40) end for

for all sinusoidk =1...N do

Not only does the orthogonality accelerate conver- Ay \JE 1+ 52

gence, but it allows us to split the errar into
half-length even and odd components, reducing the i’f - adrk%k(f?k; ISk)
complexity of each iteration by half. - A
O — O + Sesiplucs
B. Non-Linear Optimisation end for "
If the initial frequency estimateg) are close to  end for
the real frequency of the sinusoidg, then the error
caused by the linearisation (5) is very small. In
this case, Algorithm 1 should result in a value of V. RESULTSAND DISCUSSION
6 + A6y, that is even closer to the real frequencies. | this section, we characterise the proposed al-
However, if the initial estimates deviate significantlyéorithm and compare it to other sinusoidal param-
from the real values, then it may be useful to restagter estimation algorithms. We attempt to make the
the optimisation from the new frequency estimategomparison as fair as possible despite the fact that
Repeating the operation several times, we obtaingfs methods we are comparing do not have exactly
non-linear iterative solver fory, 0k, A, and y.. the same assumptions or output. Both the linear and
We have found that it is not necessary t0 Waghe non-linear versions of the proposed algorithm are

for Algorithm 1 to converge before updating th&yqjyated. For all algorithms, we usesiae window
frequencies,. We can let both the linear part and

the non-linear part of the solution run simultaneously. h(n) = cos (L+1)/2 : (41)
To do that, we must first subtract the solution of L

the previous iteration before restarting the lineao that the result of applying the window to both
optimisation. the input signalx and the basis functiong, is

The non-linear method we propose is detaileequivalent to a Hanning analysis window. Unless
in Algorithm 2 and shares some similarities wittotherwise noted, we use a frame lendth= 256.
the Gauss-Newton method [11]. However, because
the reparametrisation in (6)-(9) allows updates to Convergence
A, A" and ¢, to be incorporated into the linear We first consider the case of a single amplitude-
model immediately when solving the normal equanodulated sinusoid of normalised angular frequency
tions, convergence is greatly improved compared to = 0.17. We start with an initial frequency es-
a standard Gauss-Newton iteration in the origindmate of # = 0.0957, which corresponds to an
parameters. Just like Algorithm 1, it is possible terror of slightly more than one period over the 256-
reduce the complexity of Algorithm 2 by half bysample frames we use. The non-linear optimisation
taking advantage of the even-odd symmetry of th&lgorithm 2 is applied with different values at.
basis functions. The convergence speed in Figure 1 shows that for
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Fig. 1. Convergence of the non-linear optimisation proceduFig. 2. Reconstruction RMS error as a function of the number
for various values ofv. For « = 1, convergence is achieved inof iterations in clean conditions (linear vs. non-linear)
only 3 iterations. The floor & x 10™® rad/s is due to the finite

machine precision.
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a = 1, convergence becomes much faster than fox
other values ofx. This provides a strong indication é 0.001}
that the convergence of the algorithm is super-lineaf
although we give no formal proof. '
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B. Chirps

We measure the frequency estimation accurac
and the energy of the residual signal for known
signals. We use a synthetic signal that is the sum 05 —— —— ——— — "— —
of five chirps with white Gaussian noise. The Signal-to-noise ratio (SNR) of the input signal
chirps have linear frequency variations starting at o _

0.05, 0.1, 0.15, 0.2, 0.25 rad/s and ending at EERS Frequency RMS estimation error as a function of the
2.0,2.2,2.4, 2.6, 2.8rad/s, respectively. The relative
amplitudes of the chirps are 0 dB, -3 dB, -6 dB,

-9 dB, and -12 dB. The following algorithms are) jierations, while the non-linear version requires 3

Ragguency estimat

considered: iterations. We use 3 iterations for both methods in
« Time frequency reassignmentRR), the experiments that follow.
« Matching pursuits (32x over-sampled dictio- Fig.3 shows the frequency RMS estimation error
nary) MP), as a function of the SNR for each of the four
« Proposed algorithm with linear optimisatioralgorithms. At very low SNR, all algorithms perform
(linear), and similarly. However, as the SNR increases above 20
« Proposed algorithm with non-linear optimisatioRiB, matching pursuits stops improving. This is likely
(non-linear). due to the fact that the frequencies are not orthog-

The time frequency reassignment method is implenal, which makes its greedy approach sub-optimal.
mented as in [6]. The matching pursuits algorithrBoth the proposed linear and non-linear approaches
uses a dictionary of non-modulated sinusoids withrovide roughly the same accuracy up to 30 dB,
resolution ofr/8192. We also compare to the theo-after which the non-linear approach provides superior
retical resolution obtained from the picking the highperformance. For this scenario, the only limitation of
est peaks in the DFT. To make sure that algorithntige non-linear algorithm at infinite SNR is the fact
are compared fairly, all algorithms are constrained tbat it does not account for frequency modulation
frequencies within one DFT bin of the real frequencyyithin a frame.
i.e. there are no outliers. The amplitude estimation error is shown in Fig.
Fig. 2 shows the RMS energy of the residual. Although the behaviour of the amplitude error
(x — xp) as a function of the number of iterationgs similar to that of the frequency estimation error,
for both the linear optimisation and the non-lineahe difference between the linear and the non-linear
optimisation. The linear version converges after onlyptimisation algorithms is accentuated. The time fre-
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Fig. 4. Amplitude RMS estimation error as a function of thd=ig. 6. Reduction in residual energy as a function of the rermb
SNR. of iterations.

non_',i{;;;ifr'j performs both matching pursuits and time frequency
MP e reassignment. The linear version has overall slightly
better performance than the other methods, although
it does not perform as well as non-linear optimisa-
tion. In all cases (Fig. 3 to Fig. 5), all the algorithms
. compared behave similarly. Their error at low SNR
sl T is similar and the slope of the improvement is the
a0} ] same. What differentiates the algorithms is how far
they improve with SNR before reaching a plateau.
S C. Audio

0 1I0 2I0 I;O 4;0 50 60 inf .
Signal-to-noise ratio (SNR) of the input signal We apply our proposed a|gOI‘Ithm to a 90-second
collage of diverse music clips sampled at 48 kHz,
'ﬁwcluding percussive, musical, and amusical content.
In this case, we cannot compare to the matching
pursuits algorithm because the lack grbund truth
revents us from forcing a common set of initial

guency reassignment algorithm is not included in tHa

. . . . inusoid frequencies. We select the initial frequenc
comparison because it does not estimate amplltudse. 9 q y

. , Stimates required for the proposed algorithm using
Fig. 5 compares the reconstruction error for ﬁ

Residual RMS error (dB)

45

o

-50

Fig. 5. Reconstruction RMS error as a function of the SN
(the input noise is not considered in the error).

laorith he time f : eaks in the standard DFT.
algorithms, except the time frequency reassignmentr, . energy of the residual is plotted as a function

method, which c_annot estimate the a_mphtude arz)q the number of iterations in Fig. 6. Both algorithms
thus cannot provide a reconstructed signal. The r

fructi ) ted based h &Snverge quickly and we can see that the linear
construction error 1S computed based on e NOBqymisation only requires 2 iterations, while the non-
noisy version of the chirps. We observe performanc‘cﬁ?ear optimisation requires 3 iterations

similar to the ones in Fig. 3, with the notable '

exception that when it comes to reconstruction, tié. Algorithm complexity

non-linear optimisation is able to fit the data much |n this section, we compare the complexity of the
more efficiently than the linear optimisation at higlproposed algorithms to that of other similar algo-
SNR. rithms. For the sake of simplicity, we discard some
We also observe that the performance of owerms that are deemed negligible, e.g., we discard
algorithm is slightly worse than that of matching) (LN) terms whenO (LN?) terms are present.
pursuits at low SNR. This can be explained by someIn Algorithm 1, we can see that each iteration
slight over-fitting due to the fact that the proposerkquires8LN multiplications and8LN additions.
algorithm also includes an amplitude modulatioAdditionally, computation of thee N basis functions
term. The difference disappears if the amplitudg, prior to the optimisation require N additions
modulation term is forced to zero. and 3LN multiplications. It is possible to further
Overall, we observe from the experiment on chirpgduce the complexity of each iteration by taking ad-
that our proposed non-linear algorithm clearly outrantage of the fact that all of our basis functions have



either even or odd symmetry. By decomposing the—A9orthm Complexity _ Typical (Mflops)

) . MP (slow) ALN?P 3,300
residual into half-length even and odd components,  yp (FFT) SLNPlog, LP 1.300
only one of these components needs to be updated for linear (18) 64N® + 32LN? 900
a given basis function. This reduces the complexity non-linear ([5]) O (N* + LN?) >500
of each iteration in Algorithm 1 by half without !near (proposed)  (8M +5) LN 27

. . . . non-linear (prop.) (17M —4) LN 60
changing the result. The complexity of each iteration
is thus4 LN multiplications andtL N additions. For TABLE |
M iterations, this amounts to a total &M/ + 5) LN COMPLEXITY COMPARISON OF VARIOUS PARAMETER
operations per frame. ESTIMATION ALGORITHMS. *THE TYPICAL COMPLEXITY OF
The complexity of the proposed non-linear optimi- [5] is NOT GIVEN, BUT WE ESTIMATE IT TO BE GREATER
sation algorithm (Algorithm 2) is similar to that of THAN 500 MFLOPS

the linear version, with two notable exceptions. First,

because the frequency is changing for every iteration,

the basis functions need to be re-computed for every

iteration. Second, when starting a new iteration, the

residual must be updated using the new basis furi-terations for the non-linear optimisation. It was

tions. The total complexity is thugl7M — 4) LN also shown that the frequency estimation of the non-

operations per frame (for a single iteration, the linedinear version of our algorithm is more accurate than

and non-linear versions are strictly equivalent).  the matching pursuits and time frequency reassign-
As a comparison a simple matching pursuits afment methods for the experiment. In addition, we

gorithm that does not consider modulation requirgsilculated that the complexities of our algorithms

4L N?P operations per frame, whet@ is the over- were considerably lower than the matching pursuits

sampling factor (i.e. increase over the standard DRigorithms.

resolution). If a fast (FFT-based) implementation of | ..o other non-linear optimisation methods, the

the matching pursuits algorithm [5] is used, then teethoq we propose requires a good initial esti-
complexity is reduced t6/2LN P log, LP. mate of the sinusoids’ frequencies. Therefore, low-
_ Table | summarises the complexity of several algegmplexity sinusoid selection is another important
rlthm_s. Because the algorithms have different .depeﬁ)‘r'oblem to investigate for improving sinusoidal pa-
dencies on all the parameters, we also consider the,ater estimation. Also, for applications that require
total complexity in Mflops for real-time estlmatlonit’ the proposed algorithm could easily be extended

of sinusoids in aypical scenario, where we have 4 estimate the frequency modulation within a frame.
« frame length:L = 256,

« number of sinusoidsiN = 20,
« oversampling? = 32 (matching pursuits only),
o number of iterationsM = 2 (linear), M = 3

(non-linear), APPENDIX |

« sampling rate: 48 kHz, LINEARISATION OF THE SINUSOIDAL MODEL

» frame offset: 192 samples (25% overlap).
It is clear from Table | that the proposed algorithms,
both linear and nonlinear, reduce the complexity by
more than an order of magnitude when comparedLeét us consider a sinusoidal model with piecewise
to matching pursuits algorithms. One must of courd@ear amplitude modulation and a frequency offset
take into account that while matching pursuits cafffom an initial estimate):
estimate the sinusoidal parameters directly from the
input signal, the proposed method requires initial
frequency estimates.

VI. CONCLUSION z(n) = Z (A’f + "A'f) '
k=1

Wg have presented_a method for estimgting si- cos (O + AR n+ ¢p) , (42)
nusoidal parameters with very low complexity. Our
proposed method is based on a linearisation of the si-
nusoidal model, followed by an iterative optimisation
of the parameters. The algorithm converges quicklgheref, is known in advance andé is considered
in only 2 iterations for the linear optimisation andmall. Using trigonometric identities, we can expand



the sum in the cosine term as formulation:
N
= Z Ay, cos ¢y, cos Oin
- al , k=1
Z(n)= Z (Ak + nAk) cos ¢y, cos (0 + Ab)n N
k=1 — Z Ay, sin ¢y, sin On
N k=1
Z (Ak + nAk) sin ¢y sin (0 + Abg) n

e
I
—_

(43)

M= M= T = 11

(Ak + nAk) cos ¢y, cos Abin cos 0n

Ap, 4 n4, ) cos ¢, sin Afpn sin Oin
Ap 4 n4, ) sin ¢y, cos Afpn sin Oin

A + nAk sin ¢y, sin Afgn cos Opn .

(
(
(

e
Il
—_

(44)
[1]

In the linearisation process, we further assume that
Afyn < 1 and A}c” < Ag, so we can neglect all
second order terms and above. This translates into
the following approximations: (3]

(4]

sin AQpn ~ AGpn | (45)
cos Abyn ~ 1, (46) [5]
nA;,C sin Afgn =0 . 47

(6]
When substituting the above approximations into
(44), we obtain:

(7]

(Ak + nA}ﬁ) coS ¢y cos Opn

(9]

[10]

Ay, cos ¢ Abpn sin On

(Ak + nAk) sin ¢y, sin 0,.n
[11]

Ap sin ¢ ABpn cosOpn . (48)

Reordering the terms in (48), leads to the following

+ (A;LC cos ¢, — ApAby sin qﬁk) n.cos 0n

M- M-

(Ak sin ¢ + ApAby cos qﬁk) nsinfpn ,

e
Il
—

(49)

which is a linear combination of four functions.
The result in (49) is in fact equivalent to a first-
order Taylor expansion. Keeping second order terms
would allow us to model both the first derivative of
the frequency with respect to time and the second
derivative of the amplitude.
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